
Procesory Sygnałowe w

aplikacjach przemysłowych

Adresowanie i obliczenia

IET

Katedra Elektroniki

Kraków 2015

dr inż. Roman Rumian

Register and Register Ops in DAG1

SPECIAL CIRCBUFFER STUFF

SPECIAL FFT BIT

DAG register info

 Index registers

 I0 -- I7 (dm -- data mem), I8 -- I15 (pm -- program mem)

 Modify registers M0 -- M7, M8 -- M15

 Can be used for high speed post increment

 Special Hardware for Circular Buffers

 Base registers B0 -- B7, B8 -- B15

 Length registers L0 -- L7, L8 -- L15

The processor’s internal memory accommodates the following word sizes:

• 64-bit long word data (LW)

• 40-bit extended-precision normal word data (NW, 48-bit)

• 32-bit normal word data (NW, 32-bit)

• 16-bit short word data (SW, 16-bit)

 Only the address space determines which memory word size is

accessed. An important item to note is that the DAG automatically adjusts the

output address per the word size of the address location (short word, normal

word, or long word). This address adjustment allows internal memory to use the

address directly as shown in the following example.

I15=LW_addr;

pm(i15,0)=r0; /* 64-bit transfer */

I7=NW_addr;

dm(i7,0)=r8; /* 32-bit transfer */

I7=SW_addr;

dm(i7,0)=r14; /* 16-bit transfer */

Address Versus Word Size

Internal memory map

Instrukcje skoków bezwarunkowych i warunkowych

JUMP etykieta //skok bezwarunkowy

CALL etykieta //bezwarunkowe wywołanie podprogramu

IF NE JUMP etykieta //skok warunkowy

IF AC CALL etykieta //warunkowe wywołanie podprogramu

Niektóre pozostałe instrukcje także mogą być wykonywane

warunkowo, np. :

IF EQ DM(I0,M0) = R2;

IF EQ R8 = R2;

Data Register Pairs for SIMD and

LW Access

Data and Complementary Data Register

Access Priorities

If writes to the same location take place in the same cycle, only the write with

higher precedence actually occurs. The processor determines precedence for

the write operation from the source of the data; from highest to lowest, the

precedence is:

1. DAG1 or universal register (UREG)

2. DAG2

3. PEx ALU

4. PEy ALU

5. PEx Multiplier

6. PEy Multiplier

7. PEx Shifter

8. PEy Shifter

Example:
r0=r1+r2, r0=dm(i0,m0), r0=pm(i8,m8); /* r0 is loaded from i0*/

r0=r1+r2, r0=pm(i8,m8); /* r0 is loaded from i8 */

Data and Complementary Data Register Swaps

Registers swaps use the special swap operator, <->. A register-to-register
swap occurs when registers in different processing elements exchange
values; for example R0 <-> S1. Only single, 40-bit register-to-register
swaps are supported. Double register operations are not supported as
shown in the example below.

R7 <-> S7;
R2 <-> S0;

Regardless of SIMD/SISD mode, the processor supports bidirectional
register-to-register swaps. The swap occurs between one register in each
processing element’s data register file.

Processor supports unidirectional and bidirectional register-to-register
transfers with the Conditional Compute and Move instruction.

System Register Bit Manipulation

The system registers (SREG) support fast bit manipulation. The next example

uses the shifter for bit manipulations:
R1 = MODE1;

R1 = BSET R1 by 21; /* sets PEYEN bit */

R1 = BSET R1 by 24; /* sets CBUFEN bit */

MODE1 = R1;

However the following example is more efficient.
BIT SET MODE1 PEYEN|CBUFEN; /* change both modes */

Nop; /* effect latency */

To set or test individual bits in a control register using the shifter:
R1 = dm(SYSCTL);

R1 = BSET R1 by 11; /* sets IMDW2 bit 11 */

R1 = BSET R1 by 12; /* sets IMDW3 bit 12 */

dm(SYSCTL) = R1;

BTST R1 by 11; /* clears SZ bit */

IF SZ jump func;

BTST R1 by 12; /* clears SZ bit */

IF SZ jump func;

The core has four user status registers (USTAT4–1) also classified as system registers but for general-

purpose use. These registers allow flexible manipulation/ testing of single or multiple individual bits in a

register without affecting neighbor bits as shown in the following example.
USTAT1= dm(SYSCTL);

BIT SET USTAT1 IMDW2|IMDW3; /* sets bits 12-11 */

dm(SYSCTL)=USTAT1;

USTAT1= dm(SYSCTL);

BIT TST USTAT1 IMDW2|IMDW3; /* test bits 12-11 */

IF TF r15=r15+1; /* BTF = 1 PEx OR PEy */

Pre-Modify and Post-Modify Operations

BIT CLR MODE1 CBUFEN; /* clear circular buffer*/
nop;
I1 = buffer; /* Index Pointer */
M1 = 1; /* Modify */
instruction; /* stall, any non-DAG instruction */
instruction; /* stall, any non-DAG instruction */
R3 = dm(I1,M1); /* 1st access */
R3 = dm(I1,M1); /* 2nd access */

Post-Modify Addressing

Modify Instruction

The MODIFY instruction modifies addresses in any DAG index register
(I0-I15) without accessing memory.
The MODIFY instruction accepts either a 32-bit immediate value or an
M register as the modifier. The following example adds 4 to I1 and
updates I1 with the new value.
MODIFY(I1,4);

If the I register’s corresponding B and L registers are set up for circular
buffering, a MODIFY instruction performs the specified buffer wraparound
(if needed).
B0 = 0x40000;

L0 = 0x10000;

I0 = 0x4ffff;

I1 = modify(I0, 2); // I1 == 0x40001

Ib = MODIFY(Ia,Mc); is an enhanced version of the MODIFY instruction.

This instruction loads the modified index pointer into another index
register.
If the source and destination registers are different, then:
• The source register (Ia) is not updated.
• The destination register (Ib) receives the result of the modify.

The following example instruction accepts up to 32-bit modifiers:
R1 = DM(0x40000000,I1); /* DM address = I1 + 0x4000 0000 */

The following example instruction accepts up to 6-bit modifiers:
PM(I8,0x0B)= ASTATx; /* PM address = I8, I8 = I8 + 0x0B */

Modify Instruction

Bit-Reverse Instruction

The BITREV instruction modifies and bit-reverses addresses in any DAG
index register (I0–I15) without accessing memory. This instruction is
independent of the bit-reverse mode. The BITREV instruction adds a 32-
bit immediate value to a DAG index register, bit-reverses the result, and
writes the result back to the same index register. The following example
adds 4 to I1, bit-reverses the result, and updates I1 with the new value:
BITREV(I1,4);

An enhanced version of the BITREV instruction (ADSP-214xx), that loads
the bit reversed index pointer into another index register is shown below:
I6 = BITREV(I1,0);

The BR0 and BR8 bits in the MODE1 register enable the bit-reverse
addressing mode where addresses are output in reverse bit order. When
BR0 is set (= 1), DAG1 bit-reverses 32-bit addresses output from I0.
When BR8 is set (= 1), DAG2 bit-reverses 32-bit addresses output from
I8. The DAGs bit-reverse only the address output from I0 or I8; the
contents of these registers are not reversed. Bit-reverse addressing
mode effects post-modify operations.
BIT SET MODE1 BR0; /* Enables bit-rev. addressing for DAG1 */

IO = 0x83000 /* Loads I0 with the bit reverse of the buffer’s base

address DM(0xC1000) */

M0 = 0x4000000; /* Loads M0 with value for post-modify, which is the

bit reverse value of the modifier value M0 = 32 */

R1 = DM(I0,M0); /* Loads R1 with contents of DM address DM(0xC1000),

which is the bit-reverse of 0x83000, then post–modifies I0 for the

next access with (0x83000 + 0x4000000) = 0x4083000, which is the bit-

reverse of DM(0xC1020) */

Bit-Reverse Mode

Circular Buffering Mode

The CBUFEN bit in the MODE1 register enables circular buffering—a mode where the
DAG supplies addresses that range within a constrained buffer length (set with an L
register). Circular buffers start at a base address (set with a B register), and
increment addresses on each access by a modify value (set with an M register).
The circular buffer enable bit (CBUFEN) in the MODE1 register is cleared (= 0) at
processor reset.
Bit Set Mode1 CBUFEN;

When using circular buffers, the DAGs can generate an interrupt on buffer
overflow (wraparound).
programs use the following steps to set up a circular buffer:
1. Enable circular buffering (BIT SET MODE1 CBUFEN;). This operation is only needed

once in a program.
2. Load the buffer’s base address into the B register. This operation automatically
loads the corresponding I register. If an offset is required the I register can be
changed accordingly.
3. Load the buffer’s length into the corresponding L register. For example, L0
corresponds to B0.
4. Load the modify value (step size) into an M register in the corresponding
DAG. For example, M0 through M7 correspond to B0.
Alternatively, the program can use an immediate value for the modifier.

Circular Buffering Mode

Circular Buffering Mode

The processor’s BDCST1 and BDCST9 bits in the MODE1 register control
broadcast register loading. When broadcast loading is enabled, the
procesor writes to complementary registers or complementary register
pairs in each processing element on writes that are indexed with DAG1
register I1 (if BDCST1 =1) or DAG2 register I9 (if BDCST9 =1).
Broadcast load accesses are similar to SIMD mode accesses in that the
processor transfers both an explicit (named) location and an implicit
(unnamed, complementary) location. However, broadcast loading only
influences writes to registers and writes identical data to these registers.
Broadcast Load Mode performs memory reads only. Broadcast mode only
operates with data registers (DREG) or complement data registers
(CDREG). Enabling either DAG register to perform a broadcast load has
no effect on register stores or loads to universal registers (Ureg). For
example:

R0=DM(I1,M1); /* I1 load to R0 and S0 */

S10=PM(I9,M9); /* I9 load to S10 and R10 */

Broadcast Load Mode

Instruction Summary Broadcast Load

Alternate (Secondary) DAG Registers

To facilitate fast context switching, the processor includes alternate register sets
for all DAG registers. Bits in the MODE1 register control when alternate registers
become accessible. While inaccessible, the contents of alternate registers are not
affected by processor operations. Note that there is a one cycle latency between
writing to MODE1 and being able to access an alternate register set. The alternate
register sets for the DAGs are described in this section. For more information on
alternate data and results registers, see “Alternate (Secondary) Data Registers” on
page 2-14.
Bits in the MODE1 register can activate alternate register sets within the DAGs:
the lower half of DAG1 (I, M, L, B0–3), the upper half of DAG1 (I, M, L, B4–7), the
lower half of DAG2 (I, M, L, B8–11), and the upper half of DAG2 (I, M, L, B12–15).
Figure 6-8 shows the primary and alternate register sets of the DAGs.
Example 1

BIT SET MODE1 SRD1L; /* Activate alternate dag1 lo regs */

NOP; /* Wait for access to alternates */

R0 = DM(i0,m1);

Example 2

BIT SET MODE1 SRD1L; /*activate alternate dag1 lo registers */

R13 = R12 + R11; /* Any unrelated instruction */

R0 = DM(I0,M1);

