AKADEMIA GORNICZO-HUTNICZA
A G H IM. STANISEAWA STASZICA W KRAKOWIE

Procesory Sygnatowe w
aplikacjach przemystowych

Tryb SIMD, przerwania, konfiguracja nozek
ukiadu

IET

Katedra Elektroniki
Krakow 2015

dr inz. Roman Rumian

Lﬂ uJ Alternate (Secondary) DAG Registers
AGH

To facilitate fast context switching, the processor includes alternate register sets
for all DAG registers. Bits in the MODE1 register control when alternate registers
become accessible. While inaccessible, the contents of alternate registers are not
affected by processor operations. Note that there is a one cycle latency between
writing to MODE1 and being able to access an alternate register set. The alternate
register sets for the DAGs are described in this section. For more information on
alternate data and results registers, see “Alternate (Secondary) Data Registers” on
page 2-14.

Bits in the MODE1 register can activate alternate register sets within the DAGs:
the lower half of DAG1 (I, M, L, BO-3), the upper half of DAG1 (I, M, L, B4-7), the
lower half of DAG2 (I, M, L, B8-11), and the upper half of DAG2 (I, M, L, B12-15).

Figure 6-8 shows the primary and alternate register sets of the DAGs.
Example 1

BIT SET MODEl SRD1L; /* Activate alternate dagl lo regs */
NOP; /* Wait for access to alternates */

RO = DM (10,ml) ;

Example 2

BIT SET MODE1l SRD1L; /*activate alternate dagl lo registers */
R13 = R12 + R11l; /* Any unrelated instruction */

RO = DM (I0,M1);

MODE1 SELECT BIT

AG H SRDIL —»

SRD1H i

SRD2L —

SRD2H —

DAG1 REGISTERS

1o Mo || Lo Bo
I1 mi | L1 B1

I2 m2 || L2 B2
13 ms [L3 B3
14 ma [L4 B4
I5 ms || Ls BS
16 M6 Il L6 B6
I7 mz | L7 B7

DAG2 REGISTERS

I8 ms | L8 B8
I9 me || L9 B9
110 Mo || L10 B10
11 Mi1 [L11 B11
112 Miz | L12 B12
113 M3 || L13 B13
114 Mia || L14 B14
115 Mis || L15 B15

Alternate (Secondary) Data Register File

4t Al

rre | Lswap | oo
H:él:x o s;.rEs:x
16x40-BIT 16x40-BIT
SRRFL SRRFH SRRAFL SRRFH
rRo [rRs [so [s8 B
rm re [st [S9 |
Rz || rRio || s2 [sto0 ||
R3[| Ri1 [s3 [S11 |
Re] R12 [sa [stz [
Rs || rRiz [S5 m sz B
Re [R4 [s6 [sta [
R7 [7] Ris |7 st [sis [
—_— —_— | I | I
AVAILABLE REGISTERS—-SISD MODE PEx UNIT AVAILABLE REGISTERS-SIMD MODE PEy UNIT

Mode Control 1 Register

oy ——
()
€

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
[ofefofofofofoofofo fofofofoo]o]

CBUFEN ND32

Circular Buffer Addressing Enable Bound_ing for 32-Bit Float-

BDCST1 ing-Point Data Select

Broadcast Register Loads Indexed With |1 Enable CSEL

BDCST9 Bus Master Code Selection
(ADSP-21368/2146x only)

Broadcast Register Loads Indexed With 19 Enable PEYEN

15 14 13 12 11 10 9

Processor Element Y Enable

1 0

folofofofofofofe]efoofofofofofe]

L BRS

TRUNC Bit-Reverse Addressing for I8
Truncation Rounding Mode BRO
Select
SSE Bit-Reverse Addressing for [0
Fixed-point Sign Extension SRCU
Select Secondary MR Registers Enable
ALUSAT SRD1H
ALU Saturation Select Secondary Registers DAG1
IRPTEN High Enable
Global Interrupt Enable SRD1L
NESTM Secondary Registers DAG1

. . Low Enable
Nesting Multiple Interrupts Enable SRD2H
SRRFL Secondary Registers DAG2
Secondary Registers Register File High Enable
Low Enable SRD2L
SRRFH Secondary Registers DAG2
Secondary Registers Register File High Enable Low Enable

u JJ Permitted Input Registers for Multifunction Computations
AGH

REGISTER FILE

Ro - Fo
R1-F1
R2-F2

/ R3-F3
(MULTIFLIEH)
\ Ra.-Fa

R5 - F5
R6 - F6

_ A7 - F7 Any Register
et

=
Any Register RS- Fa

R - F9
R10- F10

R11 - F11 \

ALU
Riz-Fi2 ()
R13- Fi3 /
Ri4-Fi4
Ri15 - Fi5

Compute Instructions in SIMD Mode

g;éEEEE
I S

bit set MODEl PEYEN; /* enable SIMD */

nop; /* effect latency */

RO = R1 + R2; /* explicit ALU instruction */
SO = S1 + S2; /* implicit ALU instruction */
FO = F1 * F2; /* explicit MUL instruction */
SFO = SF1 * SF2; /* implicit MUL instruction */

MRB = MRB - R3 * R2 (SSFR); /* explicit MUL instruction */
MSB = MSB - S3 * S2 (SSFR); /* implicit MUL instruction */

R5 = LSHIFT R6 by <data8>; /* explicit shift imm instruction */
S5 = LSHIFT S6 by <data8>; /* implicit shift imm instruction */

L J Short Word Addressing of Single-Data in SIMD Mode
AGH

ANY BLOCK MEMORY ANY OTHER BLOCK
l 'WORD Y11|WORD Y10| WORD Y9 | WORD Y8 T WORD X11|WORD X10| WORD X9 | WORD X8
2
w
E WORD Y7 | WORD Y& | WORD Y5 | WORD Y4 E WORD X7 | WORD X6 | WORD X5 | WORD X4
(=] (=]
<L =
WORD Y3 | WORD Y2 | WORD Y1 | WORD Y0 WORD X3 | WORD X2 | WORD X1 | WORD X0
A I 3 A !) [y [[y
y L4 A Y Y ¥ A
\ NO ACCESS / \ SHORT WORD ACCESS /
47-32 31-16 63-48 47-32 L] 3H-16 15-0
RA RX
39-24 39-24 23-8 70
SX
39-24 39-24 23-8 7-0

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM{SHORT WORD X0 ADDRESS);
OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM{(SHORT WORD ADDRESS);
UREG = DM{SHORT WORD ADDRESS);
PM{SHORT WORD ADDRESS) = UREG;
DM{SHORT WORD ADDRESS) = UREG:

Short Word Addressing of Single-Data in SIMD Mode

oy ——
()
r —_—

ANY BLOCK ANY OTHER BLOCK

WORD Y11|WORD ¥10{ WORD Y9 | WORD Y& 'WORD X11|WORD X10| WORD X% | WORD X8

WORD Y7 | WORD Y& | WORD Y5 | WORD Y4 WORD X7 | WORD X& | WORD X5 | WORD X4

ADDRESS —p=
ADDRESS — =

WORD ¥3 | WORD ¥2| WORD Y1 | WORD Y0 WORD X3 | WORD X2 | WORD X1 | WORD X0
L A f A A A A A
r Y ¥ Y i ¥ Y Y
\ SHORT WORD ACCESS / \ SHORT WORD ACCESS /
348 4732 y 3446 150 £348 4732 y 346 {50
F""B'fff;”‘ 0X0000 |WORD Y2| 0XDODO |WORD Y0 D"'H[L’I"ST"" 0X0000 |WORD X2| 0X0000 |WORD X0
RA A
w2 2E 7O 324 2\E TD
0X0000F | WORD Y0 |0X00 0X0000% {WORD xo|0X00
A s
324 238 7O 3924 238 70
DX0000 |WORD Y2 | 0X00 OX0000} |WORD X2|0x00

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM (SHORT WORD X0 ADDRESS), RA = PM (SHORT WORD Y0 ADDRESS);

DREG = PM(SHORT WORD ADDRESS), | DREG = DM{SHORT WORD ADDRESS);
PM{SHORT WORD ADDRESS) = DREG, | DM{SHORT WORD ADDRESS) = DREG;

OTHER IHSTFIIT:TIONS WITH SIMILAR DATA FLOWS FTH SIMD, SHORT WORD, DUAL-DATA TRANSFERS ARE:

L } Normal Word Addressing of Single-Data in SIMD Mode
AGH

ANY BLOCK MEMORY ANY OTHER BLOCK
T WORD ¥5 WORD ¥4 T WORD X5 WORD X4
| | | |
ﬁ | | ﬁ T |
E WORD Y3 WORD ¥2 E WORD X3 WORD X2
o | | a | |
ol 1 | ol | T
WORD ¥4 WORD Y0 WORD X4 WORD X0
| | |
A I A I A I
Y L L i] L A L
\ HO ACCESS / \ HORMAL WORD ACCESS /
63-48 47-32 346 15-0 63-18 47-32 L 316 15-0
[[
PM DATA DM DATA
we [i [vox: [worow
RA RX

30-24 238 70 36-24 3-8 70
I
|

SA SX

30-24 238 70 36-24 3-8 70

T
1

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RXY = DM{NORMAL WORD X0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, NORMAL WORD, SINGLE-DATA TRAMSFERS ARE:
UREG = PM{NORMAL WORD ADDRESS);
UREG = DM{NORMAL WORD ADDRESS);
PM{NORMAL WORD ADDRESS) = URE;
DM({NORMAL WORD ADDRESS) = UREG;

L J Normal Word Addressing of Dual-Data in SIMD Mode
AGH

ANY BLOCK MEMORY ANY OTHER BLOCK
T Wﬂﬂlﬂ Y5 WDHID ¥4 T WOHlD x5 WOFIID X4
| 1 ﬂ | 1
ﬁ WORD Y3 WORD Y2 E WORD X3 WORD X2
=] | | o | |
g | I 9 | I
WORD Y1 WORD Y0 WORD X1 WORD X0
| | | |
Iy A 'y 3 A Iy F'y A
¥ ¥ Y i Y ¥ Y 3
\ HORMAL WORD ACCESS / \ HORMAL WORD ACCESS /
6348 4732 ¢ 36 15-0 63-48 4732y M6 15-0
I [T T
PM DATA DM DATA
WORD ¥4 WORD Y0 WORD X1 WORD X0
BUS | BUS |
RA RX
30-24 238 70 39-24 238 70
I I
WORD YD 0X00 WURID X0 0X00
|
1 SA } S5X
38-24 238 740 39-24 3-8 70
| T
WOF}‘D i X0 WDHID X1 ik {ii]

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
AX = DM{NORMAL WORD X0 ADDRESS), RA = PM{NORMAL WORD Y0 ADDRESS);

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, NORMAL WORD,
DUAL-DATA TRANSFERS ARE:

DREG = PM{NORMAL WORD ADDRESS), | DREG = DM{NORMAL WORD ADDRESS);

PM{NORMAL WORD ADDRESS) = DREG, | DM{NORMAL WORD ADDRESS) = DREG;

@m J}! Multifunction Computations

MAC and Parallel Read With Software Pipeline Coding

MRF=0, R5 = DM(I1l,M2), R6 = PM(I9,M9); /* first data */
Lcntr=N-1, do (pc,1l) unti lce;
MRF = MRF-R5*R6, R5 = DM(I1,M2), R6 = PM(I9,M9); /* loop body */

MREF = MRF-R5*R6; /* last MAC*/
lIR Biquad Stage
B1=BO0;
F12=F12-F12, F2 = DM(IO,M1), F4 = PM(I8,M8); /* first data */
Lcntr=N, do (pc,4) until lce; /* loop body */

F12=F2*F4, F8=F8+F12, F3 = DM(IO,M1), F4 = PM(I8,M8);
F12=F3*F4, F8=F8+F12, DM(I1,M1)=F3, F4 = PM(IS8,MS8);
F12=F2*F4, F8=F8+F12, F2 = DM(IO,M1), F4 = PM(I8,M8);
F12=F3*F4, F8=F8+F12, DM(I1,M1)=F8, F4 = PM(IS8,MS8);

RTS (db), F8=F8+F12, /* last MAC */
Nop;

Nop;

The sequencer controls the following operations.

* Loops. One sequence of instructions executes several times with zero overhead.

» Subroutines. The processor temporarily breaks sequential flow to execute instructions from another part of
program memory.

« Jumps. Program flow is permanently transferred to another part of program memory.

* Interrupts. Subroutines in which a runtime event (not an instruction) triggers the execution of the routine.

« Idle. An instruction that causes the processor to cease operations and hold its current state until an interrupt
occurs. Then, the processor services the interrupt and continues normal execution.

LINEAR FLOW LOOP JUMP
ADDRESS N DO UNTIL JUMP
N+1 | INSTRUCTION INSTRUCTION |4 INSTRUCTION
N+2 |INSTRUCTION INSTRUCTION INSTRUCTION
N+3 | INSTRUCTION INSTRUCTION | N TIMES INSTRUCTION
N+4 | INSTRUCTION INSTRUCTION INSTRUCTION
N+5 | INSTRUCTION INSTRUCTION INSTRUCTION
SUBROUTINE INTERRUPT IDLE
IRQ
CALL —P| INSTRUCTION |— IDLE ¢
—P| INSTRUCTION — | INSTRUCTION INSTRUCTION %Ap'l“lgg
INSTRUCTION INSTRUCTION INSTRUCTION
VECTOR
INSTRUCTION
INSTRUCTION
INSTRUCTION INSTRUCTION [4— INSTRUCTION
INSTRUCTION INSTRUCTION INSTRUCTION
INSTRUCTION INSTRUCTION INSTRUCTION
- RTS L RTI

INSTRUCTION BUS | moDE1 |

PMD[63:16] Sequencer Control Diagram
{| AsTATX |
INSTRUCTION INPUT
CACHE LOOP STACK 1 ‘_l ASTATy |
ADDRESS STACK
Y l | _LADDR |— 6 x 32 -
INSTRUCTION CONDITIONAL
LATCH
[Tonh COUNT STACK . LoGIe STATUS STACK
I 6 x32 15x3 x32
. m—
Szgﬂ‘éﬁ’é'gn INTERRUPT CONTROL
LATCH INTERRUPTS
\ | PC(E) | MASK D
f f Loop MASK POINTER
+ — h
I DADDR (A) I SEQUENCER
| FADDR (F1) |
PC STACK PCSTK
30 x 26
PCSTKP
VISA ISA DAG2
+3 +1
Y Y Y | 4 Y
NEXT ADDRESS
Direct PC Relative Next IDLE Next Indirect RTS, RTI IVT
Branch Branch Fetch Fetch Branch TOP of loop Branch

Memory and Internal Buses Block Diagram

/— Internal Memory ~N
Block 0 Block 1 Block 2 Block 3
ROM/RAM | ROM/RAM RAM RAM
U A) 'y
¢ BDO BD1 BD2 BD3)
SIMD Core (64-BIT)| (64-BIT) (64-BIT) | (84-BIT)
Instruction 5 stage PMD PMD
Cach S g 64-BIT 64-BIT Y y Y y
ache equencer " > - »
Bus Cross
) Internal Memory I/F
Bar Switch y
il i
PEx PEy DMD DMD
64-BIT oM *64-BIT 10D0 1OD1
32-BIT EPD 32-BIT 32-BIT
\ j
Peripheral External Port Peripheral External Port
*ADSP-21367/8/9 32-BIT BUS Core Bus Core Bus DMA Bus DMA Bus

ADSP-21371/5 48-BIT BUS
ADSP-214xx 64-BIT BUS

Instruction Pipeline Processing Stages

Stage

IsA

WI5A Extension

Ferchl

b
()
r —_—

In this stape, the appropriate instruction address is
chosen from various sources and driven out to mem-
ory. The instruction address is matched with the cache
to generate a condition for cache miss/hit. The next
MW address is auto incremented by one.

Next 5W address is auto
incremented by three for
every 48-bit ferch

Fetch2

This stage is the data phase of the instruction fetch
memory access wherein the data address penerator
(DAG) performs some amount of pre-decode. Based
on a cache condition, the instruction is read from
cachef/driven from the memory instruction data bus.

Stores 3 x 16-bit instruc-
tion data into the IAB
buffer and presents 1
instruction/cycle to the

decoder

Decode

The instruction is decoded and various conditions that
control instruction execution are generated. The main
active units in this stage are the DAGs, which generate
the addresses for various types of functions like dara
accesses (load/store) and indirect branches. DAG pre-
modify (M+I) operation is performed. For a cache
miss, instruction data read from memory are loaded
into the cache.

Decode VISA
instruction; store its
length information in
short words.

Address

The addresses penerated by the DAGs in the previous
stage are driven to the memory through memory inter-
face logic. The addresses for the branch operation are
made available to the fetch unit. For instruction
branches (Call/Jump) the address is forward to the
Fetchl stage. For a do until instruction the next

address is ferched.

Execure

The operations specified in the instruction are exe-
cuted and the results written back to memory or the
universal registers. For interrupt branch the IVT
address is forward to the Fetchl stage. ISA instructions
always increment PC value by 1 each cycle.

Executing VISA
instructions the PC value
is incremented by 1, 2 or
3 depending on length
information from the
Instruction decode.

Hardware Stacks
AGH

* Program count stack — Used to store the return address (call, IVT branch, do until).
« Status stack — Used to store some context of status registers.
« “Loop Stack” for address and count - Used for hardware looping (unnested and nested).

Artribute PC Srack Loop Address Loop Count Status Stack
Stack Stack
Stack Size 30 x 26 bits 6 x 32 bits 6 x 32 bits 15 x 3 x 32 bits
Top Entry Return Address Loop End Loop iteration MODE1
Address count ASTATX/ASTATy
Empty Flag PCEM LSEM SSEM
Full Flag PCFL LSOV SSOV
Stack Pointer PCSTKTP No No
Exception TRQQ SOVFI SOVFI SOVFI

Automated Access

Push Condition CALL, DO UNTIL IVT Branch
IVT branch (Timer, TRQ2-0
DO UNTIL only)

Pop Condirion RTS, RTI CURLCNTR = 1 or COND = true RTI (Timer,

IRQ2-0 only)

Manual Access

Register Access PCSTK LADDR CURLCNTR No
Explicit Push Push PCSTK Push Loop Push STS
Explicit Pop Pop PCSTK Pop Loop Pop STS

Interrupts

AGH

Interrupt Branch Mode

Interrupts are a special case of subroutines triggered by an event at runtime and are also another type of
nonsequential program flow that the sequencer supports. Interrupts may stem from a variety of conditions, both
internal and external to the processor. In response to an interrupt, the sequencer processes a subroutine call to a
predefined address, called the interrupt vector. The processor assigns a unique vector to each type of interrupt
and assigns a priority to each interrupt based on the Interrupt Vector Table (IVT) addressing scheme.

The interrupt controller is enabled by setting the global IRPTEN bit in the MODE1 register. The processor
supports three prioritized, individually- maskable external interrupts, each of which can be programmed to be
either level- or edge-triggered. External interrupts occur when an external device asserts one of the
processor’s interrupt inputs (IRQ2-0). The processor also supports internally generated interrupts. An internal
interrupt can occur due to arithmetic exceptions, stack overflows, DMA completion and/or peripheral data buffer
status, or circular data buffer overflows. Several factors control the processor’s response to an interrupt. When an
interrupt occurs, the interrupt is synchronized and latched in the interrupt latch register (IRPTL). The processor
responds to an interrupt request if:

e The processor is executing instructions or is in an idle state

e The interrupt is not masked

e Interrupts are globally enabled

¢ A higher priority request is not pending

When the processor responds to an interrupt, the sequencer branches the program execution with a call to
the corresponding interrupt vector address. Within the processor’s program memory, the interrupt vectors
are grouped in an area called the interrupt vector table (IVT). The interrupt vectors in this table are spaced
at 4-instruction intervals. Longer service routines can be accommodated by branching to another region of
memory.

Program execution returns to normal sequencing when the return from interrupt (RTI) instruction is executed.
Each interrupt vector has associated latch and mask bits.

Interrupt Categories

b
()
r —_—

% Non maskable interrupts (RESET/emulator/boot peripheral)
% Maskable interrupts (core/I0)
% Software interrupts (core)

The processor responds to interrupts in three stages:

1. Synchronization (1 cycle)

2. Latching and recognition (1 cycle)

3. Branching to the interrupt vector table (4 instruction cycles)

The following example uses delayed branches to reduce latency.
ISR IRQ2: rti;
rti;
rti;
rti;
ISR IRQ1: instruction; /* IVT branch address */
jump ISR (db);
instruction;
instruction;
ISR IRQO: rti;
rti;
rti;
rti;

L } Interrupt Processing Stages
AGH

The processor also has extensive programmable interrupt support. These interrupts are described in the
processor-specific hardware references.
To process an interrupt, the program sequencer:

1.
2.
3.

a s

Outputs the appropriate interrupt vector address.

Pushes the current PC value (the return address) onto the PC stack.

Automatically pushes the current value of the asTAaTxy and mopE1 registers onto the status stack (only if the
interrupt is from 1rRQ2-0 or the timer).

Resets the appropriate bit in the interrupt latch register (IRPTL and LIRPTL registers).

Alters the interrupt mask pointer bits (imaskp register) to reflect the current interrupt nesting state,
depending on the nesting mode. The nesT™m bit in the mobei register determines whether all the interrupts or
only the lower priority interrupts are masked during the service routine.

At the end of the interrupt service routine, the sequencer processes the rtiinstruction and performs the
following sequence.

1.
2.
3.

4.

Returns to the address stored at the top of the PC stack.

Pops this value off the PC stack.

Automatically pops the status stack (only if the AsTaTx,y and mobpE1 status registers were pushed for the IrRQ2-
0, Or timer interrupt).

Clears the appropriate bit in the interrupt mask pointer register (iIMmAskp).

AGH
Programmable Interrupt 2-0
VO Peripherals Control for Priority Core Interrupt -
(max 19 inputs) — Sources
- 3-0
P13-6l, P5-0l, Core Reset,
P18-P17I P16-P14l Sources Emulation
Latch Level LIRPTL Register IRPTL Register
Mask Level LIRPTL Register IMASK Register
Nesting Level LIRPTL Register IMASKP Register
! 7 R Yoy
Branch Level Interrupt Branch
Interrupt Vector
Table

Core Interrupt Sources
AGH

According the IVT table the core supports different groups of interrupts
such as:

e Reset - hardware/software

emulator - debugger, breakpoints, BTC

core timer - high, low priority

illegal memory access - forced long word, illegal IOP space
stack exceptions - PC, Loop, Status

IRQ2-0 - hardware inputs

e DAGs - Circular buffer wrap around

e Arithmetic exceptions - fixed-point, floating-point

e Software interrupts — programmed exceptions

Note that the interrupt priorities of the core are fixed and cannot be changed.

The interrupt latch bits in the IRPTL register correspond to interrupt mask bits in the IMASK register. (In the
LIRPTL register both mask and latch bits are present). In both registers, the interrupt bits are arranged in order
of priority. The interrupt priority is from 0 (highest) up to 41 (lowest).

Interrupt priority determines which interrupt must be serviced first, when more than one interrupt occurs in the
same cycle. Priority also determines which interrupts are nested when the processor has interrupt nesting
enabled.

Programmable Interrupt Priorities for Peripherals
Peripheral interrupts can be routed to a set of programmable interrupts (18-0). This increases the flexibility

across different I/O DMA channels and priorities. For more details see the processor-specific hardware reference
manual.

Interrupt Mask Mode
AGH

Bits that are set in the MMASK register are used to clear bits in the MODEL1 register when the processor’s
status stack is pushed. This effectively disables different modes when servicing an interrupt, or when
executing a PUSH STS instruction. The processor’s status stack is pushed in two cases:

1. When executing a PUSH STS instruction explicitly in code.

2. When an IRQ2-0 or timer expired interrupt occurs.

Programmable Interrupt Priority Control

The processor core supports 19 programmable prioritized interrupts, which are shown in an example
routing. The highest priority interrupt is POl while the lowest priority is P18l. Any peripheral interrupt output
may be connected to any programmable priority interrupt input. All peripheral interrupt output signals are
considered as source signals. The 19 prioritized peripheral interrupts (POI-P18I) of the core are considered
destination interrupts. The PICR register controls the connectivity between the source and destination.

The interrupt output of every peripheral can be programmed to connect to any one of the 19 peripheral
interrupts. Moreover, the peripherals are grouped in two broad categories—DAI or DPI, each having its own
interrupt controller. These interrupt controllers program the polarity, priority and the destination of each
peripheral interrupt output. Therefore, all peripheral interrupts can also be connected to the core as DAI or
DPI interrupts.

Programmable Prioritized Interrupts

SOURCE DESTINATION (PICR CONTROL)
(PERIPHERAL IRGY) POl Pal Pi21

DAIHI
SPIHI \ \
GPTMROO0 =
SPI
SP3l =
SP5l
SPOI =
SP21
SP4l =
EPDMADI
GPTMR1l =
SPTI
DAILI =
EPDMAAI
DP1I

MTMI
DAILI

UARTORXI
UARTOTXI
TWII

PWMI
LPOA/RTCI
LP1l =
ACCOl =
ACCHI /
MLEI L
SOFTWARE

XN HIId

XNWH
XN 42

S~

= y 5

fa J2 J2 Jt Jo Ja Ja |2 |1+ Jo fs |3 J2 | Jo
L[t fof+[4]fefofa]a[1][ofofof1]o0]

PICRO
Select Field

PICR1
Select Field

PICR2
Select Field

The IRPTL register indicates latch status for interrupts.

Interrupt Mask Register (IMASK) Each bit in the IMASK register corresponds to a bit with the same
name in the IRPTL registers. The bits in the IMASK register unmask (enable if set, =1), or mask
(disable if cleared, = 0) the interrupts that are latched in the IRPTL register. Except for the RSTI and
EMUI bits, all interrupts are maskable.

Interrupt Mask Pointer Register (IMASKP)

When interrupt nesting is enabled, the bits in the IMASKP register mask interrupts that have a lower
priority than the interrupt that is currently being serviced. Other bits in this register unmask interrupts
having higher priority than the interrupt that is currently being serviced. Interrupt nesting is enabled
using NESTM in the MODE1 register.

31 30 20 2B 27 26 25 24 23 22 M 2 10 18 17 18

Plefefefofefefefofofefefe oo]o]

b
()
r —_—

SFTal L psi
User Softwara Intarrupt 3 Pregrammable Intarrupt 5
SFT2] —™@ P14l
User Software Interrupt 2 Programmable Interrupt 14
SFT1I P15l
User Software Interrupt 1 Programmable Interrupt 15
SFTOH

P16l
Usar Software Internupt &

Programmable Interrupt 16
EMULI
Emulator Interrupt L CBTI
FLTH DaG1 Circular Buifer 71
Floating-point Invalid Operation Overflow
ELTUI L CBisl
Floating-point Underflow DAG1 Circular Buffer 15
ELTOL | Owverflow
Floating-point Overflow TMZLI
EIXI Timer Expired Low Priority

Fixad-point Overflow

Figure A-6. IRPTL, IMASK, and IMASKP Registers (Bits 31-16)

i 14 13 12 41 10 B 8 7 & &5 4 3 2 1 0
| GHEH ENEN N ENENEN CNENENEN GNENENEN
Pal EMUI
Programmabla Intarrupt 4 Emulator Intermpt
P31 RSTI
Programmable Intarmupt 3 Reset
P21 ol
Programmable Interrupt 2 llegal Input Condition Detected
Pl SOVFI
Programmable Intermupt 1 Stack Full'Overflow
POl L TMZHI
Programmable Interrupt O Timer Expirad High Priority
IRQOI ———————— SPERRI
IRQ0_I Hardware Intarrupt SPORT Error Interrupt
IRG1I I — Y A |
IRQ1_I Hardware Interrupt Hardware Breakpoint Intarmmupt
IRG21

IRG2_| Hardware Interrupt

Figure A-7. IRPTL, IMASK, and IMASKP Registers (Bits 15-0)

b

(=)
r —_—

The LIRPTL register indicates latch status, select masking, and
displays mask pointers for interrupts.

3 30 20 2B 27 26 25 24 23 22 21 20 19 {18 17 16

lefefofofofofofofofofofofofofo]o]

L_P12IMSK
P1EIMSKP Programmable Intarrupt 12
Mask
E:jc;lj;:tr:rmmahle Interrupt 18 Mask P13IMSK
P1TIMSKP Programmable Interrupt 13
. Mask
I:;osg:_tﬁrr;n;:ble Intarrupt 17 Mask Pointer PATIMSK
Programmable Interrupt 12 Mask Pointar E‘:ﬁ:ammabh Interrupt 17
P1ZIMSKP L P1BIMSK
Programmable Interrupt 12 Mask Pointer Programmable Interrupt 18
P11IMSKP Mask
Programmakble Interrupt 11 Mask Pointar PGIMSKP
P10IMSKP Programmable Intarrupt &
P ble Interrupt 10 Mask Paint Mask Fointar
rogrammable |ntermup ask Pointer | PTIMSKP
PSIMSKP Programmable Intarrupt 7
Programmable Interrupt 9 Mask Pointer Mazsk Pointar
PEIMSKP

Programmable Interrupt 8 Mask Pointer
Figure A-8. LIRPTL Register (Bits 31-16)

15 14 43 42 i1

i0 9 B 7 &6 5 4 3 2 41 0
 ENENCHEN CHENENEN CNENENEN SIENENEY

P&l
P11IMASK 4 Programmable Interrupt &
Programmable Intarrupt 11 Mask PTI
P10IMASK Programmable Interrupt 7
Programmable Interrupt 10 Mask Pal
PSIMSK Programmable Interrupt 8
Programmabile Interrupt 9 Mask Pal
PEIMSK Programmable Interrupt 9
Programmakble Intarrupt 8 Mask P10l
PTIMSK Programmable Interrupt 10
Programmabile Interrupt 7 Mask | E— - T]
PEIMS K Programmable Interrupt 11
Programmable Interrupt & Mask Pi21
P18l Programmable Interrupt 12
Programmabile Interrupt 18 P13l
P71

Programmable Interrupt 13
Programmabile Interrupt 17 9 P

Figure A-9. LIRPTL Register (Bits 15-0)

DAI Functional Block Diagram

oy ——
()
r —_—

PERIPHERAL CORE BUS

Imput EI:R:U
1 1
1 1
1o _Dutput
DAl Output L -
PERIPHERAL = Lo OFF
A I I
Enable | leeee ingut - -l CHIP
------ [
o Invert
i i (optional)
:_J'_____ Enable_
1 1 _
1 1
b Dal PIN BUFFER
-
Imput : i
DAI D
PERIPHERAL Lo
B Output L1
= 1 1
Lo DAl INTERRUPT
o LATCH
1 1
. A
1 1
1 1
P Input
input P =
- b Invernt
I (optional)
I I
DAl Output 1 S e
PERIPHERAL [®=f---=-r- |
Ooustp
“ -
Enabl
neve Lo MISCELL ANEOUS
DAl BUFFER

o

(=)
r —_—

DPI Functional Block Diagram

PERIPHERAL CORE BUS

I

SRU2
Input [
1 1
1 1
DPI o o
PERIPHERAL | Cutput Lo e
: i N S
Enable input
s : %L -
1
E g Emil:nln!.=
: |
: i DPI PIN BUFFER
P
. Inpat g i
oPl 01
Fmr:mu Output ; i
B
1 0Pl INTERRUPT
0 LATCH
1 1
. A
1 1
1 1
P
Irput
- njpu At | Imput
P
1 1
DP Output -
PERIPHERAL — #=[-———- 2 1
c i _:r_ | Output
Enable oo -
- MISCELLANECOUS
DPI BUFFER

DAI_PBax_|

INTERFACE
TO SRU

‘PBENH_I

I ——

EXTERNAL
¥ DAl PIN BUFFER

PIN BUFFER

ouTeuT J_l:uu PBix_O

-

PIN BUFFER
INPUT

INTERFACE (NOTUSED} | par_pBoc

TO SRU L

PIN BUFFER
ENABLE

(= LOW)

PBEMo:_|
L _

PIN
 BUFFER

ouT

EXTERNAL DAI
PIN BUFFER

(-l

{7 [

SIGNAL
FUNCTION

|
SPORT0_CLK_O

t

PERIFHERAL DIRECTION RELATIVE

TO SIGHALS PERIPHERAL

BUFFER
HUMEER

'
DAI_PB11_l

DAl MRECTION RELATIVE
BUFFER TO SIGHALS BUFFER

PIN BUFFER
OUTPUT DAI_PBxx_O

PIN BUFFER PIN

INTERFACE oyt | DALPBxc
TO SRU e IN

Vopext

PBENxx_|

PIN BUFFER
ENABLE

EXTERNAL DAI
PIN BUFFER

out O -

(= HIGH)

Example DAI SRU Group A Multiplexing (SRU_CLKX)

SOURCE SIGNALS DESTINATION SIGNALS ‘
SPORTS_CLK | SPORT4 CLK | SPORT3_CLK |
AGH 1 | 4
DAl PB01 O'm \
DAl PBO2 O'= y
DAl PE03 O — \-
DAl PE04 O ee— \
DAl PEOS O e—
DAl PEO6 () me— \
DAI_PBO7 () —
DAl PB0S O ee—
DAl PEDS O s—
DAl PE10 () —
DAl PE12 () e—
DAI_PB13 O s &3 I e
DAI_PE14 0 memmmf = 1) =
DAl PE15 O we—) | |= 'n
DAl PE16 () ee— ,ﬂ O E
DAl PEA7 O we—) = L— -
DAl PE18 0 w— ~ =
DAl PE1D 0 se— E E c
DAl PB20 () =— < <
SPORTD CLK () s—
SPORT1_CLE_ O ee—
SPORTZ CLE_ O ee—
SPORT3 CLE_ O ee—
SPORTA CLE_ O ee—
SPORTS CLK O s
— | /
L f !
L
L
L
LOGIC LOW (D) s—
LOGIC HIGH (1) 6 5 ’ 5
la 13 J2 |1 Jo Ja Ja J2 | Jo Ja I3 |2 |1 o
ojlo|jo|o|o||oflo|o|o|o||1|1|0o|l0|0O
OO N N M 2 22 OM 20 18 A7 16 158
SPORTS CLK | SPORT4 CLK | SPORT3 CLK |
Select Field Select Field Select Field

