
Procesory Sygnałowe w 

aplikacjach przemysłowych

Tryb SIMD, przerwania, konfiguracja nóżek 

układu

IET

Katedra Elektroniki

Kraków 2015

dr inż. Roman Rumian



Alternate (Secondary) DAG Registers

To facilitate fast context switching, the processor includes alternate register sets 
for all DAG registers. Bits in the MODE1 register control when alternate registers 
become accessible. While inaccessible, the contents of alternate registers are not 
affected by processor operations. Note that there is a one cycle latency between 
writing to MODE1 and being able to access an alternate register set. The alternate 
register sets for the DAGs are described in this section. For more information on 
alternate data and results registers, see “Alternate (Secondary) Data Registers” on 
page 2-14.
Bits in the MODE1 register can activate alternate register sets within the DAGs: 
the lower half of DAG1 (I, M, L, B0–3), the upper half of DAG1 (I, M, L, B4–7), the 
lower half of DAG2 (I, M, L, B8–11), and the upper half of DAG2 (I, M, L, B12–15). 
Figure 6-8 shows the primary and alternate register sets of the DAGs.
Example 1

BIT SET MODE1 SRD1L; /* Activate alternate dag1 lo regs */

NOP; /* Wait for access to alternates */

R0 = DM(i0,m1);

Example 2

BIT SET MODE1 SRD1L; /*activate alternate dag1 lo registers */

R13 = R12 + R11; /* Any unrelated instruction */

R0 = DM(I0,M1);





Alternate (Secondary) Data Register File



Mode Control 1 Register



Permitted Input Registers for Multifunction Computations



bit set MODE1 PEYEN; /* enable SIMD */

nop; /* effect latency */

R0 = R1 + R2; /* explicit ALU instruction */

S0 = S1 + S2; /* implicit ALU instruction */

F0 = F1 * F2; /* explicit MUL instruction */

SF0 = SF1 * SF2; /* implicit MUL instruction */

MRB = MRB – R3 * R2 (SSFR); /* explicit MUL instruction */

MSB = MSB - S3 * S2 (SSFR); /* implicit MUL instruction */

R5 = LSHIFT R6 by <data8>; /* explicit shift imm instruction */

S5 = LSHIFT S6 by <data8>; /* implicit shift imm instruction */

Compute Instructions in SIMD Mode



Short Word Addressing of Single-Data in SIMD Mode



Short Word Addressing of Single-Data in SIMD Mode



Normal Word Addressing of Single-Data in SIMD Mode



Normal Word Addressing of Dual-Data in SIMD Mode



MAC and Parallel Read With Software Pipeline Coding

MRF=0, R5 = DM(I1,M2), R6 = PM(I9,M9); /* first data */

Lcntr=N-1, do (pc,1) unti lce;

MRF = MRF-R5*R6, R5 = DM(I1,M2), R6 = PM(I9,M9); /* loop body */

MRF = MRF-R5*R6; /* last MAC*/

IIR Biquad Stage
B1=B0;

F12=F12-F12, F2 = DM(I0,M1), F4 = PM(I8,M8); /* first data */

Lcntr=N, do (pc,4) until lce; /* loop body */

F12=F2*F4, F8=F8+F12, F3 = DM(I0,M1), F4 = PM(I8,M8);

F12=F3*F4, F8=F8+F12, DM(I1,M1)=F3, F4 = PM(I8,M8);

F12=F2*F4, F8=F8+F12, F2 = DM(I0,M1), F4 = PM(I8,M8);

F12=F3*F4, F8=F8+F12, DM(I1,M1)=F8, F4 = PM(I8,M8);

RTS(db), F8=F8+F12, /* last MAC */

Nop;

Nop;

Multifunction Computations



The sequencer controls the following operations.

• Loops. One sequence of instructions executes several times with zero overhead.

• Subroutines. The processor temporarily breaks sequential flow to execute instructions from another part of 

program memory.

• Jumps. Program flow is permanently transferred to another part of program memory.

• Interrupts. Subroutines in which a runtime event (not an instruction) triggers the execution of the routine.

• Idle. An instruction that causes the processor to cease operations and hold its current state until an interrupt 

occurs. Then, the processor services the interrupt and continues normal execution.



Sequencer Control Diagram



Memory and Internal Buses Block Diagram



Instruction Pipeline Processing Stages



Hardware Stacks

• Program count stack – Used to store the return address (call, IVT branch, do until).

• Status stack – Used to store some context of status registers.

• “Loop Stack” for address and count – Used for hardware looping (unnested and nested).



Interrupt Branch Mode
Interrupts are a special case of subroutines triggered by an event at runtime and are also another type of 
nonsequential program flow that the sequencer supports. Interrupts may stem from a variety of conditions, both 
internal and external to the processor. In response to an interrupt, the sequencer processes a subroutine call to a 
predefined address, called the interrupt vector. The processor assigns a unique vector to each type of interrupt 
and assigns a priority to each interrupt based on the Interrupt Vector Table (IVT) addressing scheme.
The interrupt controller is enabled by setting the global IRPTEN bit in the MODE1 register. The processor 
supports three prioritized, individually- maskable external interrupts, each of which can be programmed to be 
either level- or edge-triggered. External interrupts occur when an external device asserts one of the 
processor’s interrupt inputs (IRQ2–0). The processor also supports internally generated interrupts. An internal 
interrupt can occur due to arithmetic exceptions, stack overflows, DMA completion and/or peripheral data buffer 
status, or circular data buffer overflows. Several factors control the processor’s response to an interrupt. When an 
interrupt occurs, the interrupt is synchronized and latched in the interrupt latch register (IRPTL). The processor 
responds to an interrupt request if:
• The processor is executing instructions or is in an idle state
• The interrupt is not masked
• Interrupts are globally enabled
• A higher priority request is not pending
When the processor responds to an interrupt, the sequencer branches the program execution with a call to 
the corresponding interrupt vector address. Within the processor’s program memory, the interrupt vectors 
are grouped in an area called the interrupt vector table (IVT). The interrupt vectors in this table are spaced 
at 4-instruction intervals. Longer service routines can be accommodated by branching to another region of 
memory.
Program execution returns to normal sequencing when the return from interrupt (RTI) instruction is executed. 
Each interrupt vector has associated latch and mask bits.

Interrupts



The following example uses delayed branches to reduce latency.
ISR_IRQ2: rti;

rti;

rti;

rti;

ISR_IRQ1: instruction; /* IVT branch address */

jump ISR (db);

instruction;

instruction;

ISR_IRQ0: rti;

rti;

rti;

rti;

 Non maskable interrupts (RESET/emulator/boot peripheral)
 Maskable interrupts (core/IO)
 Software interrupts (core)

The processor responds to interrupts in three stages:
1. Synchronization (1 cycle)
2. Latching and recognition (1 cycle)
3. Branching to the interrupt vector table (4 instruction cycles)

Interrupt Categories



The processor also has extensive programmable interrupt support. These interrupts are described in the 

processor-specific hardware references.

To process an interrupt, the program sequencer:

1. Outputs the appropriate interrupt vector address.

2. Pushes the current PC value (the return address) onto the PC stack.

3. Automatically pushes the current value of the ASTATx/y and MODE1 registers onto the status stack (only if the 

interrupt is from IRQ2–0 or the timer).

4. Resets the appropriate bit in the interrupt latch register (IRPTL and LIRPTL registers).

5. Alters the interrupt mask pointer bits (IMASKP register) to reflect the current interrupt nesting state, 

depending on the nesting mode. The NESTM bit in the MODE1 register determines whether all the interrupts or 

only the lower priority interrupts are masked during the service routine.

At the end of the interrupt service routine, the sequencer processes the RTI instruction and performs the 

following sequence.

1. Returns to the address stored at the top of the PC stack.

2. Pops this value off the PC stack.

3. Automatically pops the status stack (only if the ASTATx,y and MODE1 status registers were pushed for the IRQ2–

0, or timer interrupt).

4. Clears the appropriate bit in the interrupt mask pointer register (IMASKP).

Interrupt Processing Stages



Interrupt Process Flow



According the IVT table the core supports different groups of interrupts
such as:
• Reset – hardware/software
• emulator – debugger, breakpoints, BTC
• core timer – high, low priority
• illegal memory access – forced long word, illegal IOP space
• stack exceptions – PC, Loop, Status
• IRQ2-0 – hardware inputs
• DAGs – Circular buffer wrap around
• Arithmetic exceptions – fixed-point, floating-point
• Software interrupts – programmed exceptions

Note that the interrupt priorities of the core are fixed and cannot be changed.
The interrupt latch bits in the IRPTL register correspond to interrupt mask bits in the IMASK register. (In the 
LIRPTL register both mask and latch bits are present). In both registers, the interrupt bits are arranged in order 
of priority. The interrupt priority is from 0 (highest) up to 41 (lowest).
Interrupt priority determines which interrupt must be serviced first, when more than one interrupt occurs in the 
same cycle. Priority also determines which interrupts are nested when the processor has interrupt nesting
enabled.

Programmable Interrupt Priorities for Peripherals

Peripheral interrupts can be routed to a set of programmable interrupts (18–0). This increases the flexibility 
across different I/O DMA channels and priorities. For more details see the processor-specific hardware reference
manual.

Core Interrupt Sources



Bits that are set in the MMASK register are used to clear bits in the MODE1 register when the processor’s 

status stack is pushed. This effectively disables different modes when servicing an interrupt, or when 

executing a PUSH STS instruction. The processor’s status stack is pushed in two cases:

1. When executing a PUSH STS instruction explicitly in code.

2. When an IRQ2–0 or timer expired interrupt occurs.

Interrupt Mask Mode

Programmable Interrupt Priority Control

The processor core supports 19 programmable prioritized interrupts, which are shown in an example 

routing. The highest priority interrupt is P0I while the lowest priority is P18I. Any peripheral interrupt output 

may be connected to any programmable priority interrupt input. All peripheral interrupt output signals are 

considered as source signals. The 19 prioritized peripheral interrupts (P0I–P18I) of the core are considered

destination interrupts. The PICR register controls the connectivity between the source and destination.

The interrupt output of every peripheral can be programmed to connect to any one of the 19 peripheral 

interrupts. Moreover, the peripherals are grouped in two broad categories—DAI or DPI, each having its own 

interrupt controller. These interrupt controllers program the polarity, priority and the destination of each 

peripheral interrupt output. Therefore, all peripheral interrupts can also be connected to the core as DAI or 

DPI interrupts.



Programmable Prioritized Interrupts



The IRPTL register indicates latch status for interrupts.

Interrupt Mask Register (IMASK) Each bit in the IMASK register corresponds to a bit with the same 
name in the IRPTL registers. The bits in the IMASK register unmask (enable if set, =1), or mask 
(disable if cleared, = 0) the interrupts that are latched in the IRPTL register. Except for the RSTI and 
EMUI bits, all interrupts are maskable.
Interrupt Mask Pointer Register (IMASKP)
When interrupt nesting is enabled, the bits in the IMASKP register mask interrupts that have a lower 
priority than the interrupt that is currently being serviced. Other bits in this register unmask interrupts 
having higher priority than the interrupt that is currently being serviced. Interrupt nesting is enabled 
using NESTM in the MODE1 register.



The LIRPTL register indicates latch status, select masking, and 

displays mask pointers for interrupts.



DAI Functional Block Diagram



DPI Functional Block Diagram





Example DAI SRU Group A Multiplexing (SRU_CLKx)


