
1

Advanced VHDL

1Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Module: Electronics & Telecomunication, 5rd year

Programmable Logical Devices

Agenda

Structural description
map, generate

Lexical elements
objects: signals, variables, constants, generics

Sequential statements
process, wait, if, case, loop, next, exit, assert, function, procedure

Assertion based verification
introduction

Concurrent statements
assignments: unconditional, conditional and selected, subprograms, block

2Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

2

Structural description

generate statement

Syntax:

label:
{[for instruction if condition]} generate

{concurrent_statements}

end generate;

D Q

CLK

X0 X1 X2 X3 X4
U0 U1 U2 U3

D Q

CLK

D Q

CLK

D Q

CLK

Example:

gen1: for i in 0 to 3 generate
U: DFF port map (X(i), clk, X(i+1));

end generate;

3Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

The most common usage of the generate statement is to
create multiple copies of components, processes, or blocks.

Structural description

generate statement

for i in 0 to 3 generate
if (i=0) generate

UA: DFF port map (SIN, CLK, X(i+1)); end generate;
if ((i>0) and (i<3)) generate

UB: DFF port map (X(i), CLK, X(i+1)); end generate;
if (i=3) generate

UC: DFF port map (X(i), CLK, SOUT); end generate;
end generate;

D Q

CLK

SIN X1 X2 X3 SOUT
U0 U1 U2 U3

D Q

CLK

D Q

CLK

D Q

CLK

4Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

3

Structural description

generate statement

gen_code_label:

for index in 0 to 7 generate

begin

BUFR_inst : BUFR

generic map (

BUFR_DIVIDE => "BYPASS")

port map (

O => clk_o(index),

CE => ce,

CLR => clear,

I => clk_i(index));

end generate;

5Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

The example shows a generate
for loop that generates 8
regional clock buffers (BUFR)
using the same chip enable (CE)
and clear (CLR) signals but with
their own clock input and output
signals. The separate clock input
and output signals are
referenced to different bits of a
signal vector using the variable
called index.

http://www.fpgadeveloper.
com/2011/07/code-
templates-generate-for-
loop.html

generate statement

6Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

The second use case is very handy for
debugging purposes, or for switching out
different components without having to
edit lots of code. The example below turns
on an entire process just by switching
g_DEBUG to 1. One interesting thing about
generate statements used this way is that
the same signal can be driven by multiple
generate statements. The designer needs to
ensure that these generate blocks are
mutually exclusive, such that no two can be
active at the same time. Otherwise there
will be a problem with the same signal
being driven by two sources

https://www.nandland.com/vhdl/exa
mples/example-generate-
statement.html

4

Lexical elements

Constant declarations

Constant declarations
• scalar:

constant name: type := expression;

• array:
constant name: array_type [(index)] := expression;

eg:
constant Vcc: real := 5.0;
constant Cycle: time := 50 ns;
constant five: bit_vector := “0101”;
constant SIX: std_logic_vector (8 to 11):= “0110”;
constant H_clk_per : TIME := 10ns;
constant T_CSRS: TIME := H_clk_per/2 - 3ns;

7Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Lexical elements

Generic declarations

Generic declarations
generic (generic_interface_list);
generic (name: type := expression);

eg:
entity CPU is

generic (BusWidth : integer := 16)
port (

DataIn : in bit_vector(BusWidth-1 downto 0);
DataOut : out bit_vector(BusWidth-1 downto 0);
...

8Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Declares a static value similar to constant, but the value can be changed
from the outside. May be declared in entity (available in all architectures
associated with it), block and component. Used for parameterized models
(bus width, delay time, etc.)

5

Generic declarations example
– Altera-provided
parameterized lpm_ff megafunctions

9Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

ENTITY reggen IS
GENERIC(REG_WIDTH : INTEGER);
PORT(
d : IN STD_LOGIC_VECTOR(REG_WIDTH - 1 DOWNTO 0);

clk : IN STD_LOGIC;
q : OUT STD_LOGIC_VECTOR(REG_WIDTH - 1 DOWNTO 0));

END reggen;

ARCHITECTURE a OF reggen IS
BEGIN
PROCESS (clk)

BEGIN
IF (clk’event AND clk = ’1’) THEN
q <= d;

END IF ;
END PROCESS;

END a;

Generic declarations example
usage: generic initialisation via HDL

10Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

PACKAGE reg24gen_package IS -- package definition
CONSTANT TOP_WIDTH : INTEGER := 24;
CONSTANT HALF_WIDTH : INTEGER := TOP_WIDTH / 2;
END reg24gen_package;

USE work.reg24gen_package.ALL; -- component instantiation

ENTITY reg24gen IS
PORT(d : IN STD_LOGIC_VECTOR(23 DOWNTO 0);

clk : IN STD_LOGIC;
q : OUT STD_LOGIC_VECTOR(23 DOWNTO 0));

END reg24gen;

ARCHITECTURE a OF reg24gen IS
COMPONENT reggen -- recall from package
GENERIC(REG_WIDTH : INTEGER);
PORT(d : IN STD_LOGIC_VECTOR(REG_WIDTH - 1 DOWNTO 0);

clk : IN STD_LOGIC;
q : OUT STD_LOGIC_VECTOR(REG_WIDTH - 1 DOWNTO 0));

END COMPONENT;
BEGIN
reg12a : reggen GENERIC MAP (REG_WIDTH => HALF_WIDTH) -- upload generic data
PORT MAP
(d => d(HALF_WIDTH - 1 DOWNTO 0),

clk => clk,
q => q(HALF_WIDTH - 1 DOWNTO 0));

...

6

Lexical elements

Generic declarations example
– Xilinx Spartan 6 PLL_BASE component

11Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

----- CELL PLL_BASE -----
library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_SIGNED.all;

use IEEE.STD_LOGIC_ARITH.all;

library SPARTAN6;

use SPARTAN6.vpkg.all;

use SPARTAN6.VCOMPONENTS.all;

entity PLL_BASE is
generic (

BANDWIDTH : string := "OPTIMIZED";

CLKFBOUT_MULT : integer := 1;

CLKFBOUT_PHASE : real := 0.0;

CLKIN_PERIOD : real := 0.000;

CLKOUT0_DIVIDE : integer := 1;

CLKOUT0_DUTY_CYCLE : real := 0.5;

CLKOUT0_PHASE : real := 0.0;

CLKOUT1_DIVIDE : integer := 1;

CLKOUT5_DUTY_CYCLE : real := 0.5;

CLKOUT5_PHASE : real := 0.0;

-- and many more parameters ...

Generic declarations example
– Xilinx Spartan 6 PLL_BASE component
usage generic initialisation via BDE

12Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

7

Generic declarations example
– Xilinx Spartan 6 PLL_BASE component
usage generic initialisation via BDE

13Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Sequential statements

• process (concurrent!)
• assignment statements
• wait
• if
• case
• null
• loop
• next
• exit
• assert
• subprograms

14Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

8

Sequential statements

loop statement

Suitable for multiplication of logic in behavioral modeling.

Syntax:
[label:]
[while condition | for index in valA to valZ] loop

sequential statements;
end loop;

Examples:
L: for i in 1 to 10 loop

sequential statements;
end loop;

M: while i < 11 loop
equential statements;
i := i + 1;

end loop;

15Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Sequential statements

loop statement

Example: multiplication of logic

entity multi_and is
port (a: in bit_vector (0 to 3);

m: out bit_vector (0 to 3));
end multi_and;

architecture example of multi_and is
begin

process (a)
variable b: bit;
begin
b := '1';
for i in 0 to 3 loop
b := a(3-i) and b;
m(i) <= b;

end loop;
end process;

end example;

16Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

9

Sequential statements

next statement

Syntax:
next [label] [when condition];

Examples:

for i in 0 to max_limit loop
if a(i) = 0 then next;
end if;
g(i) := a(i);

end loop;

Immediate transition

to the next iteration

L1: while i < 5 loop
L2: while j < 5 loop

...
next L2 when i=j;

...
end loop L2;
end loop L1;

17Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Sequential statements

exit statement

Syntax :

exit [label] [when condition];

Example:

for i in 0 to max_limit loop
if a(i) = 0 then exit;
end if;
g(i) := a(i);

end loop;
...

Immediate

quit

18Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

10

Sequential statements

assert statement

Prints a message on the console during simulation and controls the simulation.

Syntax:

assert warunek [report string] [severity level];
level: FAILURE | ERROR | WARNING | NOTE

Example:

assert (Machine_Code /= "0000")
report "Illegal Opcode"
severity FAILURE;

assert statement may occure in the entity declaration.

VHDL’92 enables using report without assert.
report „Well done - simulation finished ☺"

19Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Sequential statements

assert statement – *AHDL help explanation

20Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

When an assertion violation occurs, the report is issued and displayed on the
screen. The supported severity level supplies an information to the simulator.
The severity level defines the degree to which the violation of the assertion
affects operation of the process:
•NOTE can be used to pass information messages from simulation (default)
•WARNING can be used in unusual situation in which the simulation can be
continued, but the results may be unpredictable;
•ERROR can be used when assertion violation makes continuation of the
simulation not feasible
•FAILURE can be used when the assertion violation is a fatal error and the
simulation must be stopped at once.

Summary
• The message is displayed when the condition is NOT met,

therefore the message should be an opposite to the condition.
• Concurrent assertion statement is a passive process and

as such can be specified in an entity.
• Concurrent assertion statement monitors specified condition continuously.
• Synthesis tools generally ignore assertion statements.

11

Sequential statements

assert statement examples

21Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

CHECK_SETUP: process (CLK)
begin

if (CLK'event and CLK = '1') then
Q <= D;
assert D'stable(SETUP_TIME) --ignored by synthesis
report "Setup Violation..." severity warning;

end if;
end process CHECK_SETUP;
--
assert packet_length /= 0
report "empty network packet received"
severity warning;
--
assert clock_pulse_width >= min_clock_width
severity error;

Assertion based verification

22Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

12

Assertion based verification
Aldec webinar

23Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Assertion based verification
Aldec webinar

24Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

13

Sequential statements

Subprograms – function statement

Functions return a single value. When the function is called the formal parameters
are given the values of the actual parameters.

Syntax:
function name [(parameter: type;...)] return type is
declarations
begin

sequential statements;
end [name];

Example: (from std_logic_1164 library, checks for unknown values)
function Is_X (s : STD_ULOGIC) return BOOLEAN is
begin

case s is
when 'U' | 'X' | 'Z' | 'W' | '-' => return true;
when others => null;

end case;
return false;

end function Is_X;

25Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Sequential statements

Subprograms – procedure statement

Procedures may return more then one value. A procedure itself does not return a

value, but does formal parameters that are replaced by the values of the actual

parameters

Syntax:
procedure name [(c;...)] is

declarations

begin
sequential statements;

end [name]

parameters :

{[variable] names: [in | out | inout] type [:= expression]; |

[signal] names: [in | out | inout] type;}

Passing the parameters to the procedure : in inout
Passing the parameters from the procedure : out inout

26Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

14

Sequential statements

Subprograms – procedure statement

Example:
procedure vect_to_int (z: in bit_vector (1 to 8);

zero_flag: out boolean;
q: inout integer) is

begin
q := 0;
zero_flag := true;
for i in 1 to 8 loop

q := q * 2;
if z(i) = '1' then

q := q + 1;
zero_flag := false;

end if;
end loop;
return;

end vect_to_int;

Call: vect_to_int (s,t,u);

27Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Concurrent statements

Concurrent subprogram call

In both below examples, the effect is the same:

architecture concurrent of SUB_CALL is
begin

vect_to_int (bitstuff, flag, number);
end concurrent ;

architecture sequential of SUB_CALL is
begin

process (bitstuff, number)
begin

vect_to_int (bitstuff, flag, number);
end process;

end sequential ;

28Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

15

Sequential statements

Subprograms – procedure example

procedure read_cycle (
address: in STD_LOGIC_VECTOR(15 downto 0); -- input parameter
signal addr: out STD_LOGIC_VECTOR(15 downto 0); -- DSP addres bus
signal data: in STD_LOGIC_VECTOR(15 downto 0); -- DSP data
data_read: out STD_LOGIC_VECTOR(15 downto 0); -- reading result
signal rd: out STD_LOGIC; -- DSP signal
signal ms3: out STD_LOGIC -- DSP signal)

is

constant T_CSRS: TIME := H_clk_per/2 - 3ns;
constant T_ARS: TIME := H_clk_per/2 - 3ns;
constant T_RW: TIME := H_clk_per - 2ns + (wait_states*H_clk_per);
constant T_RSA: TIME := H_clk_per/2 - 2ns;

begin
ms3 <= '0';
addr <= address;
wait for T_ARS;
rd <= '0';
wait for T_RW;
rd <= '1';
data_read := data;
wait for T_RSA;
addr <= (others => 'Z');
ms3 <= '1';

end procedure read_cycle;

29Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Sequential statements

Subprograms – function/procedure
statements

30

Subprograms are used mostly in testbenches.
There are planty of utlility functions in various libraries...

Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

16

Concurrent statements

31

• signal assignment statements
• unconditional
• conditonal
• selected

• subprograms

• block

Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Concurrent statements

block statement

Groups concurrent statements.

Blocks can be nested to form a hierarchy.

Syntax:

[label :] block [(boolean_expression)] [is];

[declarations]

begin
concurrent statements;

end block [label];

declarations:

• constants, types, signals

• subprograms

• use statements

• components

32Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

17

Concurrent statements

block statement

Boolean_expression automatically generates the guard signal,

which may be used for conditioning the signal assignments through

the guarded clause.

Example:

B1: block (control)
begin

s <= guarded '1';
end block B1;

s <= '1' assignment will occure, if control equals true.

Note! Not all of the tools allow for the use of this option.

33Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

Thank you!

34Rajda & Kasperek © 2017 Dept. of Electronics, AGH UST

