

Guidelines

for the “Formal verification part-0”

practice session

1 Goal of the session

1) Initial introduction to the JasperGold tool
2) RTL debug in a formal verification environment
3) RTL development in a formal verification environment
4) Properties debug in a formal verification environment
5) Properties development in a formal verification environment
6) Sequence equivalence checking after RTL modifications
7) C-to-RTL sequence equivalence checking

2 Prepare the environment

• Copy project files from the UPEL to $HOME directory

• Unzip the project archive

3 Run the tool

• Optional: source <jg_config_script>

• cd <unziped_directory>/formal_flow_setup

• jg dut_toplevel_formal_flow.tcl

Or just call the Jasper in a terminal: jg
And source TCL script in GUI:

Source new TCL script
Source the same/

previously used TCL script

After some code changes it is possible to rerun the same script or one of the others that were
already sourced in Jasper.

4 Learn how to analyze results
4.1 Specific module properties
It is possible to review only specific module properties by selecting module in Design Hierarchy
tree:

4.2 Filtering properties
In Property Table it is possible to check properties details, but you can also filter properties by its
results, type, etc.

Verification results filter Property type filterClear all filters

4.3 Open waveforms
To open a waveform just double left click on a failing assertion’s or covered cover’s row.

Note that there are no generated waveforms for passing assertions, unreachable covers,
undetermined properties and assumptions.

4.4 Open source pane
You can review source code in Jasper below waveform:

4.5 Add signals to waveform
To add signals to a waveform, it is possible to drag-and-drop them from the Source Pane or from
the Signal Browser (watchout current selected module) or right mouse click on the signal and
“Plot Selected Signals”:

Hierarchy tree

Search signals by name Plot signal

5 Fix the RTL

Now try to fix all three bugs in the DUT’s RTL code.

Always, try to start your analysis from an assertion, which looks like the easiest one (describing
the easiest conditions).

5.1 Results with three RTL bugs

Hint: Try to start from debug of one of assertions saying that the ‘in_ready’ flag is low after
receiving of last input data in a given frame (as__in<0,1,2>_ready_low_when_in<0,1,2>
_data_last_already_sent_in_frame).

5.2 Results after fixing of a first bug

Hint: Try to start from debug of one of assertions saying that only one input data can be
transferred through the arbiter at the same time (‘as__not_more_than_one_
arb_in_transferring_at_the_same_time’).

5.3 Results after fixing of a second bug

Hint: try to debug one of assertions checking if at the end of a frame, number of output transfers
from a given input interface is the same as number of transfers received through the interface
(as__out<0,1,2>_transfers_num_equal_to_in<0,1,2>_transfers_num_at_the_end_of_frame).

5.4 Desired results with all three fixes

If you are here, then congratulations! Great debug!

6 Destruction phase

Now break anything you want in the RTL and check how formal verification catches that

Thank you !

