

Design specification

for the DUT

used in the “Formal verification part-0”

practice session

1 Functional description

Functional diagram of the DUT is shown in Figure 1.

Processing control interface
(processing request, processing parameters, processing acknowledgement)

Input
interface 0

Input
interface 1

Input
interface 2

Arbiter with
an arbitration

scheme chosen
through

processing
parameters

FIFO a configurable
size

Output
interface

DUT

Figure 1. Functional diagram of the DUT

Processing within the DUT is controlled through the “processing control interface” (described
in section 3.3. After processing is requested through the interface:

• The DUT needs to receive all valid input data (all valid data until data indicated as last
data) from all enabled “input interfaces”. More details about the “input interfaces” can
be found in section 3.4. Enabling of input interfaces is driven through the processing
control interface (go to section 3.3 for more details)

• The DUT needs to send all the data from all enabled input interfaces out through the
“output interface”, described in section 3.5

• When all the data is sent out, the DUT needs to acknowledge the processing request
through the processing control interface

Such a procedure as described above (from a processing request to a processing acknowledgment) is named as a “frame” in
later parts of this document. After reset, the DUT can process several frames, one by one, as shown in

Figure 2. A processing request is noted there as “proc_req”, whereas a processing
acknowledgment – as “proc_ack”.

t

re
se

t

Frame-0 Frame-1 F-2 Frame-3

p
ro

c_
re

q

p
ro

c_
re

q

p
ro

c_
re

q

p
ro

c_
re

q

p
ro

c_
ac

k

p
ro

c_
ac

k

p
ro

c_
ac

k

p
ro

c_
ac

k

Figure 2. Frame-by-frame processing concept

Functional chart of the DUT is shown in Figure 3. As “transferring”, a full transfer from the input
to the output interface is noted there. As “last data transferred” - sending of last data out through
the output interface.

Waiting for a frame processing
request

Processing request

Transferring of data from input
interface 0

Input interface 0
enabled

Last data
transferred

Processing completed for data
from input interface 0

No

Yes

Yes

No

Transferring of data from input
interface 1

Input interface 1
enabled

Last data
transferred

Processing completed for data
from input interface 1

No

Yes

Yes

No

Transferring of data from input
interface 2

Input interface 2
enabled

Last data
transferred

Processing completed for data
from input interface 2

No

Yes

Yes

No

Checking if processing is
completed for data from all

input interfaces

Processing
completed

Acknowledging of a processing
request

No

Yes

Yes

No

Reset

Figure 3. Processing scheme of the DUT

Arbitration of data from all enabled input interfaces happens based on an “arbitration mode”,
provided through the processing control interface (see section 3.3 for more details). Current DUT
supports only one arbitration mode – Round-Robin arbitration. If any other mode is provided
to the current DUT, the DUT may behave in an unpredictable way.

The Round-Robin algorithm is shown in

Figure 4. General idea of that algorithm’s implementation in hardware is that the arbiter
arbitrates a first interface with valid data after a recently arbitrated one.

in0

clk

in0_valid

in1_valid

in2_valid

arbitrated in1 in2 in0 in2 in0 in0 in1 in0 in1 in2

La
st

 =
 0

P
ri

o
ri

ti
es

 =
 1

,2
,0

La
st

 =
 1

Pr
io

ri
ti

es
 =

 2
,0

,1

La
st

 =
 2

P
ri

o
ri

ti
es

 =
 0

,1
,2

La
st

 =
 0

P
ri

o
ri

ti
es

 =
 1

,2
,0

La
st

 =
 2

Pr
io

ri
ti

es
 =

 0
,1

,2

La
st

 =
 0

Pr
io

ri
ti

es
 =

 1
,2

,0

La
st

 =
 0

P
ri

o
ri

ti
es

 =
 1

,2
,0

La
st

 =
 0

P
ri

o
ri

ti
es

 =
 1

,2
,0

La
st

 =
 1

Pr
io

ri
ti

es
 =

 2
,0

,1

La
st

 =
 0

Pr
io

ri
ti

es
 =

 1
,2

,0

La
st

 =
 1

P
ri

o
ri

ti
es

 =
 2

,0
,1

Figure 4. Round-Robin arbitration scheme

As visible in the functional diagram from Figure 1, the DUT is also expected to implement a FIFO
of a configurable size. The FIFO is needed to reduce latencies in a system implementing the DUT.
A system integrator should be able to configure number of entries within the FIFO through a top-
level parameter of the DUT.

Width (number of bits) of data transferred through the DUT should be also configurable through
a top-level parameter of the DUT.

2 Microarchitecture description

All the RTL code related to the DUT can be found in a following file:
<..>/intel_formal_verification_practice_session_0/rtl/dut_toplevel.sv

The file is structured as shown in the microarchitecture diagram of the DUT from

Figure 5. The diagram simply reflects all the DUT’s functionalities described in section 1.

REG

REG

REG

Overall control logic

Input
interfaces

control logic

FIFO
REGS

Arbitration
control logic

FIFO control
logic

Output
interface

control logic

DUT top-level (dut_toplevel.sv)

Processing control interface

R
eq

Pa
ra

m
s

A
ck

Input
interface 0

Input
interface 1

Input
interface 2

Output
interface

A
R

B
IT

ER

Figure 5. Microarchitecture diagram of the DUT

Figure 5 presents all data path registers. These are in the input interfaces control logic and in the
FIFO.

The DUT is in a single clock domain and has a single clock input, named “clk”.

The DUT is in a single power domain and has a single reset input, named “nreset”. That reset
input is active low (when that signal low, then reset is asserted). The reset is asserted
asynchronously and deasserted synchronously (synchronously to the ‘clk’ clock input).

Configurability of the DUT (described in section 1) is provided through following parameters:

• DATA_WIDTH – width (number of bits) of data transferred through the DUT

• FIFO_HEIGHT – number of entries within the FIFO implemented in the DUT

3 Interfaces
3.1 Standard request/acknowledgement interface

A standard request/acknowledgement interface consists of signals shown in Table 1. This
interface is used by an initiator to request any action from a target, which then requires
confirmation (acknowledgment) send by the target back to the initiator. Both request and
acknowledgement can be optionally equipped with associated data. Data transfers happen when
both ‘req’ and ‘ack’ signals are high in the same clock cycle.

Table 1. Signals of a standard request/acknowledgment interface

Signal
name

Width Direction Description

req Single-bit signal Initiator ->
target

Request

• This signal can go high only, when acknowledgement
(‘ack’ signal) was low in a previous cycle

• This signal needs to be kept high until
acknowledgement (‘ack’ signal) goes high

• After acknowledgement (‘ack’ signal) goes high, this
signal ever goes low

• When this signal is high, it indicates that there is valid
data exposed on the ‘req_data’ signal

req_data Multi-bit signal Initiator ->
target

Request data

• This signal is optional

• Request data can consist of several signals, which are
transmitted together through the interface

• After exposing to the interface (together with the
‘req’ signal), data needs to be stable (unchanged) in
all cycles when the request (‘req’ signal) is high

ack Single-bit signal Target ->
initiator

Acknowledgement

• This signal can go high only when request ('req'
signal) is high

• After request ('req' signal) goes high, this signal goes
ever high

• This signal needs to be kept high at least while
request ('req' signal) is high

• After request ('req' signal) goes low, this signal goes
ever low

• When this signal is high, it indicates that there is valid
data exposed on the ‘ack_data’ signal

ack_data Multi-bit signal Target ->
initiator

Acknowledgement data

• This signal is optional

• Acknowledgement data can consist of several signals,
which are transmitted together through the interface

• After exposing to the interface (together with the
‘ack’ signal), data needs to be stable (unchanged) in
all cycles when the acknowledgement (‘ack’ signal) is
high

An example waveform of a standard request/acknowledgment interface is shown in Figure 6.

req

DEFINED, STABLE DEF., ST. DEFINED, STABLE D., S.

DEF., ST. DEF., ST. D., S.

req_data

ack

ack_data

Figure 6. An example waveform of a standard request/acknowledgement interface

3.2 Standard valid/ready interface

A standard valid/ready interface consists of signals shown in Table 2. This interface is used
to transfer data from an initiator to a target. Data transfer happens when both ‘valid’ and ‘ready’
signals are high in the same clock cycle.

Table 2. Signals of a standard valid/ready interface

Signal
name

Width Direction Description

valid Single-bit signal Initiator ->
target

Valid flag

• This signal can go high independently on the ‘ready’
signal (can go high earlier, later or at the same time as
the ‘ready’ signal)

• After going high, this signal needs to be kept high
until data is transmitted (until ready is high)

• When this signal is high, it indicates that there is valid
data exposed on the ‘data’ signal by an initiator

ready Single-bit signal Target ->
initiator

Ready flag

• When high, it indicates that a target can consume
data

• This signal can go high independently on the ‘valid’
signal (can go high earlier, later or at the same time as
the ‘valid’ signal)

• When this signal is not high when ‘valid’ is high, then
it ever goes high (each transfer must be completed)

data Multi-bit signal Initiator ->
target

Data

• Data can consist of several signals, which are
transmitted together through the interface

• After exposing to the interface (together with the
‘valid’ signal), data needs to be stable (unchanged)
until the data is transmitted (until ‘ready’ is high)

An example waveform of a standard valid/ready interface is shown in
Figure 7.

valid

0 1 2 3 4 5 6

ready

clk

data

Figure 7. An example waveform of a standard valid/ready interface

3.3 Processing control interface

The processing control interface is based on a standard request/acknowledgment interface,
described in section 3.1. All signals from that interface, together with additional assumptions
related to the signals, are shown in Table 3.

Table 3. Signals of the processing control interface

Signal name
Width
[bits]

DUT port
direction

Description

proc_req 1 input Processing request

• Behaves as a ‘req’ signal from a standard
request/acknowledgement interface

• When this signal is low and there is any
valid input data (when any ‘in{0,1,2}_valid’
signal is high), then this signal ever goes
high

proc_req_in{0,1,2}_en 1 (each) input Enable flag for a corresponding input
interface

• Behaves as a ‘data’ signal from a standard
request/acknowledgement interface

proc_req_in{0,1,2}_
arb_mode_id

1 (each) input Arbitration mode ID for a corresponding
input interface

• Behaves as a ‘data’ signal from a standard
request/acknowledgement interface

• In a current DUT’s version, needs to be
‘1’b0’ (Round-Robin arbitration scheme)

proc_ack 1 output Processing acknowledgement

• Behaves as an ‘ack’ signal from a standard
request/acknowledgement interface

• This signal can go high only when all data
from a current frame has been sent out
through the output interface (only when a
transfer with the ‘out_data_last’ signal
high has happened)

3.4 Input interfaces

There are three input interfaces. All of them work based on a standard valid/ready interface,
described in section 3.2, with some additional assumptions. Names of signals from the interfaces
start from prefixes indicating a given interface – ‘in0_’ for input interface 0, ‘in1_’ for input
interface 1 and ‘in2_’ for input interface 2.

All signals of the input interfaces, together with additional assumptions related to the signals, are
shown in Table 4.

Table 4. Signals of the input interfaces

Signal name
Width
[bits]

DUT
port

direction
Description

in{0,1,2}_valid 1 input Valid flag

• Behaves as a ‘valid’ signal from a standard
valid/ready interface

• When processing is requested (when
‘proc_req’ signal from the processing control
interface is high), a corresponding input
interface is enabled (‘proc_req_in{0,1,2}_en’
signal from the processing control interface is
high) and a last transfer from a corresponding
input interface has not been exposed yet for a
given frame (when there has not been
‘in{0,1,2}_valid’ high with in{0,1,2}_data_last’
high in a given frame), then this signal is ever
high again

in{0,1,2}_ready 1 output Ready flag

• Behaves as a ‘ready’ signal from a standard
valid/ready interface

• Can be high only, when a frame processing is
active (when the ‘proc_req’ signal from the
processing control interface is high and the
‘proc_ack’ signal from that interface is low)

• Can be high only, when a corresponding
interface is enabled (when a corresponding
‘proc_req_in{0,1,2}_en’ signal from the
processing control interface is high)

• Can be high only if a last transfer from a
corresponding input interface has not
happened yet for a given frame (when a
transfer with a corresponding signal
‘in{0,1,2}_data_last’ high has not happened yet
in a given frame)

Signal name
Width
[bits]

DUT
port

direction
Description

in{0,1,2}_data DATA_WIDTH input Data

• Behaves as a ‘data’ signal from a standard
valid/ready interface

in{0,1,2}_data_last 1 input Indicator of last data in a frame

• Behaves as ‘data’ from a standard valid/ready
interface

• Indicates a last transfer (last data) in a given
frame

• This signal is ever high, if there have been any
transfers with that flag being low (from a
corresponding input interface)

• Can be high even for first data in a given frame
(it would mean only one transfer per a frame)

3.5 Output interface

The output interface is based on a standard valid/ready interface, described in section 3.2. All
signals from that interface, together with additional assumptions related to the signals, are
shown in Table 5.

Table 5. Signals of the output interface

Signal name
Width
[bits]

DUT
port

direction
Description

out_valid 1 output Valid flag

• Behaves as a ‘valid’ signal from a standard
valid/ready interface

• Can be high only, when a frame processing is
active (when the ‘proc_req’ signal from the
processing control interface is high and the
‘proc_ack’ signal from that interface is low)

out_ready 1 input Ready flag

• Behaves as ‘ready ’for a standard valid/ready
interface

out_data DATA_WIDTH output Data

• Behaves as a ‘data’ signal from a standard
valid/ready interface

• Must be the same as corresponding data
received through a corresponding input
interface

Signal name
Width
[bits]

DUT
port

direction
Description

out_data_source_id 2 output Source ID

• Behaves as a ‘data’ signal from a standard
valid/ready interface

• This signal indicates from which input interface
the data come:

• 2’b00 – from input interface 0

• 2’b01 – from input interface 1

• 2’b10 – from input interface 2

out_data_last 1 output Indicator of last data in a frame

• Behaves as a ‘data’ signal from a standard
valid/ready interface

• This signal indicates a last output transfer (last
data) in a given frame (last at all, taking all
input interfaces into account)

• This signal needs to be high in each frame

• This signal Can be high only for a last output
transfer

4 SVA properties

SVA properties for the DUT can be found in following locations:

• Interface properties:
<..>/intel_formal_verification_practice_session_0/properties/dut_toplevel_interface_pr
operties.sv

• Properties related to internal signals:
<..>/intel_formal_verification_practice_session_0/properties/dut_toplevel_internal_pro
perties.sv

